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Curvilinear Extensions to Johnson-Neyman Regions of Significance

and Some Applications to Educational Research

Kenneth W. Wunderlich and Gary D. Borich

The University of Texas

Consider an experiment in which there are two treatments, one criterion

and one covariable, and that the researcher would like to detect a co-

variable by treatment interaction. In order to detect this interaction,

the researcher can (1) divide the covariable into any number of discrete

categories (i.e., blocks) and perform a Treatment x Blocks analysis of

variance (Edwards, 1968) or (2) leave the covariable a continuous measure

and test for the homogeneity of group regressions (Walker and Lev, 1953).

For the homogeneity of group regressions analysis the researcher employs

each covariable value as a discrete unit of measurement and thereby avoids

losing information by assigning different covariable values to the same

block.

Cronbach and Snow (1973) have shown that for the case in which there

is a moderately strong interaction, the statistical power of the homo-

geneity of group regressions test is superior to blocking at the median,

blocking at the 33rd and 67th percentiles, or similar configurations that

may be employed in a Treatment x Blocks design. Classification schemes

such as these discard power by treating dissimilar data the same, causing

the risk of accepting a false null hypothesis to increase beyond that

which can be expected when the homogeneity of group regressions test is

applied.

When group regressions are heterogeneous, i.e., E chooses not to

employ a factorial design, Johnson and Neyman's (1936) procedure can be
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used to determine the region(s) of covariable values for which treatments

are significantly different. These regions allow covariable scores to be

used to determine the treatment for which each S is best suited or if, for

any given S, there is no best treatment. This technique is used generally

in the study of aptitude-treatment or trait-treatment interactions and is

considered the preferred methodology for such studies (Berliner & Cahen,

1972; Cronbach & Snow, 1973).

Considerable thought has been expended in an effort to determine

whether the assumption of a quadratic relation between a single predictor

and a criterion violates the assumptions which Johnson and Neyman (1936)

state for calculating regions of significance about interacting regres-

sions. In particular, there has been special concern for the assumption

of linearity. One may ask whether "linearity" refers to the functional

relation of the criterion and predictor or whether it is in the context of

a linear statistical model, if not both. The computational procedure,

however, reveals no need for the former assumption of linearity, thereby

providing the foundation for extending the Johnson-Neyman procedure for

determining regions of significance to the curvilinear case.

Johnson and Neyman (1936, p.. 73) in discussing the difference, 0,

between the regression equations for two experimental groups as 8(x,y) =

fi(x,y) f2(x,y) where fl and f2 are functions of predictor variables

x and y, comment:

The functions f
1
and f

2
may be chosen arbitrarily, according to the

conditions of the particular problem, with the only theoretical re-.

striction that both functions f
1

and f
2
must be linear with regard

to the unknown constants they involve. Thus we could assume that,

e.g., fi(x,y) = AC + Alcosxy + A2e
si

nx but our method would fail if

it were necessary to assume fi(xy) = cosA
1
x + A

2
Y since here the

dependence upon Al and A
2

is not linear.



3

Most crucial is the position of the coefficient of the variable term,

cosxy. When placed before the variable term as a multiplicative factor,

this term makes the equation consistent with what is known mathematically

as a linear equation. The fitting of curvilinear regression equations

defined by polynomials of the form Y = b0 + blx + b2x2 + . . . + b xP is

in principle no different from the fitting of multiple regression equa-

tions.

Development of Curvilinear Formulae

Group Regressions

Given groups 1 and 2 with regression equations of the form Y =

Al + B
1
X + C1X2 and Y2 = A2 + B2X + C2X2 where the subscripts 1 and 2

refer to groups 1 and 2 respectively, the first consideration in the

series of hypotheses related to the Johnson-Neyman procedure is that of

homogeneity of criterion variance. The second consideration is that of

heterogeneity of regression. Johnson and Jackson (1956), in their two-

predictor case, provide the formula for computing the variance of the

actual scores about the predicted scores and the variance of the observed

scores about a regression line with a common slope in order to compute an

F-ratio for homogeneity of group regressions. If the probability level

associated with this F-ratio is found to be significant, then the Johnson-

Neyman test for regions of significance is recommended.

The points at which the regression curves intersect, indicating the

points of no difference, can also be determined. The computational forms

to be employed in this series of steps is as follows.
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Regions of Significance

. The difference in regression curves is expressed as (A1 - A2) +

(6, - B
2
)X + (C

1
- C

2
)X

2
= D. Setting D = 0 yields a quadratic equation

(A1 - A2) + (B
1
- B

2
)X + (C

1
- C

2
)X

2 = 0 which can be solved. Application

of the quadratic formula, - B ±-i B2 - 4AC, yields two zeroes assuming the
2A

term B2 - 4 AC is non-negative. If this term were negative, there would be

no point at which the two curves intersect. Such an occurrence is feasible

as shown in Figure 1.

Insert Figures 1, 2 and 3

If B2 4AC = 0, then Figure 2 is most likely and, if B2 - 4AC > 0,

then Figure 3 is likely.

To determine regions of significance there are several possibilities

based on which of the situations outlined above is considered. Given

Figure 1 or 2 one would most likely find a left and right boundary for the

region of non-significance as indicated by the shaded portion. To deter-

mine these points along the X-axis, consider the formula:

)a(

D2
P Q)/1

where S
a
2 is the best estimate of the error variance obtained by pooling

D

Q

2

the variances about the group regression lines and
P

is the variance
+

for the difference in regression lines where D = (A1 - A2) +

(Bl - B2)X + (C
1

C
2
)X2 and where P + Q is a "scaling" factor used to

determine the variance for the difference between the regression equations

for the two groups. The value of (P + (q) depends upon the values of the

basic characteristics of matching the x's and y's. Where x' and y' lie

near the population means of x and y, the value of (P + Q) becomes small

1 1
since (P + Q) becomes -- + x

1
= x' = x

2
and y

1
= y' = y

2*
D
2

is of
N
1

N
2
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the general form AX4 + BX3 + CX2 + DX + E so that the equation

(+ Q/

DySa2 EP + Q)S
F.05(1,N-6) expressible as D -13 - 6

F.05
-6 a - 0 is a

N

fourth order (quartic) equation. This is consistent with the illustrations

presented earlier. If four distinct solutions exist then two regions of

non-significance are defined as indicated in Figure 3. To find the solu-

tions to this equation, a method suggested by Standard Mathematical Tables

(1965) is available which requires finding a solution of a resolvent cubic

equation first but which in turn can be used to obtain all four roots of

the above fourth order equation. The following formulae are used in

finding these values.

Given the quartic equation (1) x4 + ax3 + bx
2
+ cx

1
+ d = 0, a form

which the equation obtained from D
2

can assume, a resolvent cubic equation

of the form (2) y
3

- by
2
+ (ac - 4d)y - a

2
d + 4bd - c

2
= 0 is obtained.

A root of this equation is obtained by reducing equation (2) to the form

(3) z
3
+ fz + g = 0; the "second" order term is eliminated by substituting

(z + 4) for y in (2) where f = 4[3(ac - 4d) - b2) and

,3
g = -A-{2b3 - 9b (ac - 4d) + 27(-a2d + 4bd - c2). Let A =

3

+ 1
2 4 27

3and B = I:Iik_ .13..2_

+
f3 ; then A + B = M is a root of equation (2) from

2 4 27

)1

.2
which the roots for (1) can be obtained. Consider R = f'-- - b + M, if R i 0,

and E =P2- R2 2b
4

4ab - 8c -a3

4R
CI

I1,
-'

2
- R 2 - 2b + 4ab - 8c -

4 41i..

2
-13a2

Otherwise D
t

- 2b + 2D34
4

- 4d and E = ---- - 2b - 2 M2 - 4d . The four

roots of the fourth order equation are then x = -a + R
. ±

D and x = -R ± E .

These roots are real dependent upon the arguments for the square roots above

being greater than or equal to zero.



6

Research Applications

The above computations may be simplified through the use of a computer

program (Wunderlich and Borich, 1973) which,after solving the fourth order

equation for determining regions of significance, plots the data points,

within-group regressions and regions of significance for the case in which

there are two treatments, one criterion and one predictor. Before applying

the program, however, the investigator must consider the full range of

calculations, both linear and nonlinear, that may be required by any given

data set. These calculations are diagrammed sequentially in Figure 4.

Insert Figure 4 about here

Note that the sequence begins by testing the assumption of curvilinearity

and that criterion-covariable relationships may be curvilinear for groups

separately or combined. In one case the combined groups may exhibit a

single underlying curvilinear relationship such that the two groups are

samples from the same population, i.e., regression slopes for the groups

are homogeneous. In a second case the relations between the covariable

and criterion may be curvilinear for each group separately, i.e.,, regres-

sion slopes for the groups are heterogeneous. Only for the latter case

are regions of significance tenable. Whereas the foregoing discussion

addresses both homogeneity of curvilinear regressions and regions of

significance, it does not cover a third opportunity to detect a curvilinear

relationship. In a third case regressions that are both linear and non-

intersecting (ordinal) may mask an underlying curvilinear relationship

in which linear slopes of both groups form a single curvilinear trend.

The continuity of separate linear slopes can take the form of a single

curvilinear regression that is easily missed when the efficiency of linear
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and curvilinear models are not compared at the outset of the research.

This initial comparison and the sequence of steps representing the left

portion of Figure 4 are calculated by the curvilinear program. When

one or both within-group regressions are linear, i.e., a curvilinear

model fails to significantly improve prediction, the researcher is referred

to a linear program by Borich (1971) for the case in which there is one

predictor or to a linear program by Borich and Wunderlich (1973) for the

case in which there are two predictors.

To illustrate the above computations, a research study conducted

by Hughes and published in the American Educational Research Journal (1973,

10, 21-37) was reanalyzed with the Wunderlich and Borich (1973) curvilinear

program.

Background. Hughes set out to establish that differences in residual post-

test achievement are a function of pupils responding to teacherb' questions

(a) randomly, (b) systematically and (c) in a self-selected style in

which the pupil has the choice of whether or not to respond. With three

schools available for experimentation, E chose a 3 x 3 factorial design

with schools as the first factor and type of responding as the second.

Criterion performance was established with a 222-item posttest based upon

the content of the treatment, a wildlife lesson directed to seventh- and

eighth-grade pupils. In addition, E collected scores on nine covariables

with the foresight that these may confound posttest performance. Among

these E included the most likely predictor--that of pretest achievement

on the criterion instrument. E chose to remove posttest variance attrib-

utable to differences on the pretest by using as the criterion the differ-

ence between predicted and actual posttest scores (i.e., the residuals).
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Hughes' data provided the opportunity to uncover nine aptitude

treatment interactions. For our illustration, however, the reanalysis was

limited to one of the nine covariables, that of the pretest and to only

one pair of treatments, that involving the self-selected and systematic

response groups.

Results. These data, while previously reanalyzed by 3orich (1974)

with the assumption that covariable-criterion relationships were linear,

were reanalyzed a second time assuming that relationships between covariable

and criterion were curvilinear. Application of the curvilinear program

to these data, however, revealed no significant improvement in prediction

from that obtained from a linear model for either the systematic response

or the self - selected response groups and therefore the investigator was

referred to the more suitable linear program (Borich, 1971). In the

interest of providing a real data illustration of the curvilinear tech-

nique, the program then was forced subsequent to the model comparisons

test to continue as though curvilinear regressions had been found in ane

or more treatments. The program, therefore, calculated the homogeneity

of group regressions test for curvilinear regressions, the test for a

common intercept and regions of significance rather than "exit" as would

be expected after the model comparison test for lack of a significant

improvement in predictive efficiency with the curvilinear model. The

resulting plot from the curvilinear analysis of these data is reported

in Figure 5 and the resulting plot from the corresponding linear analysis

by Borich (1974) is reported in Figure 6.

Insert Figures 5 and 6 about here
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Note that for both analyses a region of significance is indicated

to the left of the data mass. While the region of significance for the

curvilinear plot begins at the covariable value of 14.20 (taken from

the printout) and the region of significance for the linear plot at the

covariable value of 13.20, both regicns lie in approximately the same

area and encompass approximately the same range of covariable values.

These ranges represent those covariable values for which the treatments

are significantly different at or beyond the .05 level. For this example

the curvilinear plot lends little new information to the study and, if

employed, might needlessly complicate its interpretation. Using the

linear plot, we might conclude that those subjects scoring below 13.20 on

the pretest should receive the self-selected response treatment while those

falling above this value are likely to ; '.:_c7e equally well from either

treatment and therefore should receive ' t,s least costly of the two treat-

me.nts.

Other configurations. Lest the reader receive the impression from

this example that the present data represent the only configuration of

curvilinear regressions and corresponding regions of significance, other

hypothetical distributions have been analyzed and plotted and are reported

in an appendix to this report. A listing of the program used to generate

these plots is also provided.
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Figure Captions

Figure 1. B
2

- 4AC < 0.

2
Figure 2. B - 4AC = 0.

Figure 3. B
2

- 4AC > 0.

11

Figure 4. Sequence of linear and curvilinear calculations for ATI analyses.

Figure 5. Region of significance (< 14.21) and nonsignificance (> 14.20)
for Hughes (curvilinear analysis).

Figure 6. Region of significance (< 13.21) and nonsignificance (> 13.20)
for Hughes (linear analysis).
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PREDICTOR vARTRoLE

a. A positive linear regression
and a moderately strong curvilinear
regression with small left and
right regions of significance
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c. Two moderately strong curvi-
linear regressions in opposite
directions with a small left and a
moderately sized right region of
significance
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PREDICTOR VARIRMA

b. Two slightly curvilinear positive
regressions with a moderately sized
left and large right region of
significance
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PREDICTOR oininuLE
14700

d. A slightly curvilinear regression
and a moderately strong curvilinear
regression in opposite directions with
a small left and a large right region
of significance



PROGRAM CURVATI(INPUT,OUTPUT,PLOT)
C (PRELIMINARY VERSIONp4/5/74)
C CONTROL CARDS AND THE DATA ARE ARRANGED IN THE FOLLOWING ORDER
C FIRST CARD: COLS, 105 NUMBER OF SUBJECTS IN GROUP 1

C COLS, 641110 = NUMBER OF SUBJECTS IN GROUP 2
C COLS'S c MISSING DATA OPTION
C IF LERO, ALL DATA IS INCLUDED IN THE ANALYSIS

IF ONE, BLANKS ARE NOT INCLUDED OUT ZEROES ARE
C IF TWO, BLANKS AND ZEROES ARE NOT PROCESSED

C
COLS. 16m2S a ALPHA (P). LEVEL USED TO DECIDE

WHETHER A LINEAR OR CURVILINEAR MODEL IS APPROPRIATE
C SECOND CARDS COLS, 1*S 2 FVALUE ASSOCIATED WITH P, A6011(0111 AND N*3)
C THIRD CARD: GROUP 1 FORMAT(PREDICTOR MUST PRECEDE CRITERION)
C INSERT GROUP 1 DATA HERE
C FOURTH CARD: GROUP 2 FORMAT
C INSERT GROUP 2 DATA HERE
C PROGRAMMED BY KEN M wt/NDERLICH AND GARY D BORICH, RESEARCH AND DEVELOPMENT
C CENTER FOR TEACHER EDUCATION, THE UNIVERSITY OF TEXAS AT AUSTIN

DIMENSION Y1(230),X1(230),X12(230),Y2(230),X2C230),X22(230)0(450)
1,X(450),X02(450),FRMT1(8),FRMT2(8),A(400)03(400),C(400),NSCOW)OP
2M(10),XX( 4),PX(4),XPTLN1( 35),YPTLNI(35),XPTLN2(35),YPTLN2(35),XPT(
335),YP1(35),
4GX1(4),GY1(4),OX2(4),0Y2(4),0X3(4),GY3(4)/GX4(4)/GY4(4),AA(5),2(4)
COMPLEX
READ 1,N1,N2,MISS,PBLV

1 FORMAT (215,4X,I1oF5.3)
READ 27,FSL

e7 FORMAT (F8,3)
READ 2,CFRMT1(I),I21/8)

2 FORMAT (8A10)
READ FRMT1p(X1(1),Y1(I),I21,N1)
CALL AMISDAT (X1,Y1011,MI88)
DO 3 Ka1,N1

3 X12(K)gX1(K)*X1(K)
CALL SUMDATA(Y101,X12,Y1M,X1M,X12MOISDpX1SO,X128D,Y1S3,XISS,X12$
1$,RYX1oRYX12,RXX120RSSYX10R8SYX12,RSSXX12,Ni)
READ 2.(FRMT2(/),I21,8)
READ FRMT2/(X2(I),Y2(I),I21,N2)
CALL AMISDAT(X2,Y2,N2DMISS)
DO 4 K=I,N2

4 X22(K)=X2(K)*X2(K)
CALL SUMDATA (Y2,X2022,Y2M,X2M,X22M$Y2SD,X2SD,X22SD,Y2SSpX25S,X22
18StRYX2pRY)(22,RXX22,RSSYX20R8SYX22,RSSX)(220N2)
N=N1+N2
DO 5 K=101
X(K)=X1(K)
Y(K)=X2(K)

5 X02(K)=X12(K)
DO 6 01111N2
X(N1.0K)=X2(K)
Y(N1+K)uY2(K)

6 X02(N1IK)=X22(K)
CALL SUMDATA(YrX,X02,YM/XM,X02MOSD,XSO,X02eDirY88,XSS0X028$0RYXRY
1X02,RXX02,RSSYX,RSSYX02eRS8X)(02oN)
PRINT 7

7 FORMAT (IHI)
PRINT 801,N20,Y1M,Y2M/YM,Y18D0Y2SD,Y80,XIM,X2M/XM,X1SD0)(21)D,XSO,
1RYX1,RYX2,RYX

8 FORMAT(28X, *SUMMARY STATISTIOS*//,29)( ,GROUP 1*8X*GROUP 2*9X*TOTAL
1*//p5X*GROUP N*20X,14,11X,I4,118X,I4p//pSX*CRITERION MEAN*9X,F8e3,7
2X,F8(13,6X/P8,3,//#5X/*CRITERION ST, DEVQ*SX,F8.30X#F8t3t6W8113,/
3 /,5X, *PREDICTOR MEANA9X.F8.3,7W8p3P6X080 3,//e5X.*PREDICTOR ST.



4DEV,145X#Fbe3,7XpF803,6X$F8413,//p5X/*CORRELATION Y AND X*6X,F6e4,
S9X,F0e4,8X0Ftoe4)
AN=N
ANDFmANg6e0
AN1 mN1
AN1DFmAN14,3,0
AN2MN2
AN2DF4AN216,0

C MODEL COMPARISON
RSOlatRYX1*RYX14RYX12*RYX1202,0*RYX1*RYX12111RXX12)/(1,0*RXX12*RXX12

1)
RSQ2m(RYX2*RYX2*RYX22*RYX2202,0*RYX2*RY*22*RXX22)/(1,0.PRXX22*RXX22

1)

R1=RYX1*RYX1
R2=RYX2*RYX2
VAYXX1=Y1SD*Y1SD*(110RS01)
VAYXX2=Y2SD*Y2SD*(10,RSQ2)
VAYX1 :Y1SD*YISD*(1e041,RYX1*RYX1)
VAYX2=Y2SO*Y2SD*(1,0.*RYX2*RYX2)
FGP1= (RSG1s0R1)/((le0sRSO1)/AN1DF)
FGF2= (RSG20R2)/((le(d sR5Q2)/AN2DF)
ANDF1=N1<e290
ANOF2=N2*2e0
SLMOD1=PR8F(1,0pAN1DF/FGP1)
SLMOD2=PRBF(1eOlAN2DF,FGP2)
IF(SLMODIeLEePBLVIORISLMOD2eLE,P8LV)17,16

1b PRINT 180PBLV
18 FORMAT( /05X*A COMPARISON OF A LINEAR AND QUADRATIC MODEL FOR EACH

1OF GROUPS 1 AND 2 SUGGESTS*165XF*NO SIGNIFICANT DIFFERENCE AT THE
2 *F5,3* LEVEL AND THUS USE OF A LINEAR MODEL AND */F5X,*ANALYSIS I
3S SUGGESTED, SEE BORICH, EDUCATIONAL AND PSYCHOLOGICAL MEASUREMEN
4Tolig/p5X,*1971,31pP2510253e*)
GO TO 101

17 BX1P(Y1SD/XISD)*(RYX1+RYX12*RXX12)/(1,0RXX12*RXX12)
8X21:(YISD/X12SD)*( RYX12RYX1*RXX12)/(1,0eRXX12*RXX12)
A01=Y1M*SX1*XlmBX21*X12M
6X24(Y2SD/X2SD)*(RYX2eRYX22*RXX22)/(1,0wRXX22*RXX22)
BX22=CY2SD/X22SD)*(RYX22eRYX2*RXX22)/(1,0RXX22*RXX22)
A02.74214008X2*X2M+8X22*X22M
PRINT 12oA0103X1p8X21,A020X2pBX22

12 FORMAT ( / / / /,5X, *THE REGRESSION EQUATION FOR GROUP 1 IS Y m *F8,4
10 * *F8.4* X + *F8,4* XX,* / /,5X, *THE REGRESSION EQUATION FO
2R GROUP 2 IS Y = *F8,4* *F8e4* X i 08,4* XX,*)
PT1gPT2=0,0
ERROR2VAYXX1tVAYXX2
SYY00.741SS*Y2SS
SXXw=XISSO(2SS
SXX2w=X12SS40(22ss
RUSSw=RSSYX1*RSSYX2
RYX2SSigmRSSYX12+RSSYX22
RXX29Siv=RSSXX12.0RSSXX22
VAREGRSmSYYww((RYOS4**2*SXX2W+SXXw*RYXaSSW**20.2,0*RXX2SSW*RYX2SSw

1*RYX8Sw)/(SXXW*8XX2044PRXX25SW**2))
ANO= ANDF/2,0
FREGRES =AD*(VAREGRS.*ERROR)/ERROR
PREGRESmPRBF(2,0,ANDF0FREGRES)
PRINT 14,FREGRES,PREGRES

14 FORMAT(//f5X*THE F*RAT10 FOR A TEST OF HOMOGENIETY OF REGRESSION I
IS *F8,3p/o5X,AWITH AN ASSOCIATED PROBABILITY LEVEL OF *F8,3)
VINTER=Y$D*YSD*((1eOvRYX*RYXOYX02*RYX026PRXX020,RXX02+210*RYX*RYX02

1 *RXX02)/(100**XX02*RXX02))
ANO*N*6



FINTER=(ANDF/3.0)*(VINTERERROR)/ERROR
PINTER= PREIF(3,0,ANUF0FINTER)
PRINT 15. FINTER,PINTER

15 FORMAT(//s5X.*THE HYPOTHESIS OF COMMON REGRESSION CONSTANTS IS TES
1TED BY AN FRATIO OF *F8,3/5)(1* WHICH HAS AN ASSOCIATED PROBABILIT
2Y LEVEL OF *F8,3)
AD=A01*02
BX048X18X2
8X2Da8X218X22
QUADg8XD*BXD4,0*102D*AD
IF(QUAD,GE,0.0)20.19

19 PRINT 21
21 FORMAT(//.5X.*THE REGRESSION CURVES FOR GROUPS 1 AND 2 DO NOT INTE

1RSECT,*)
GO TO 22

20 IF(QUAD,E0,0,0)23,24
23 PT1= BXD/(2,0*E1X2O)

PRINT 25,PT1
25 FORMAT( / /,SX, *THE REGRESSION CURVES INTERSECT AT A POINT WHERE X I

1S EQUAL TO * F6,3)
GO TO 22

24 PT1=(SQRT(GUAD).8XD)/(2,0*BX2D)
PT2=(6XD*SORT(QUAD))/(2,0*BX2D)
PRINT 2b.PT1oPT2

26 FORMAT(//.5X.*THE REGRESSION CURVES INTERSECT AT THE POINTS WHERE*
1/*X IS EQUAL TO *F6.3* AND WHERE X IS EQUAL TO *F6,3)

22 R1=1,0/(1,00.RXX12*RXX12)
R2=1,0/(1,0RXX22*RXX22)
S1=2,0*RXX12/SORT(X1SS*X1285)
$22210*RXX22/SORT(X288 *X22SS)
FACTOR=F8L*ERROR/ANDF
x4CGEF aBX20*8X2C1* FACTOR*(R1 / XI2SS * R2/X2288)
XICOEF =2,0*BXD*BX02D +FACTOR*( RI*51 + R2*82)
X2COEFF 26XD*EIXD+2,4*AO*SX2DFACTOR*( RI/XISS + R2 /XZSS RI*S1 wX1

1M R2 *82 *X2M 2,0*X12MARI/X12SS * 2,01X22m*R2/X2288)
XICOEF =2,0*AD*BxO FACTOR*(R1*31*X12M .R2OrS2*X22M210*R10(1M/X1SS
1"210*R2*X2M/X2SS)
CONSTA= AD*AD 40 FACTOR *( 1,0/AN1 +1110/AN2 *XIM*XIM*RI/XISS + R2*
1X2m*X2M/X258 s R1 *Si*X1M*X12M R2*S2*X2M*X22M R1*X12M*X12M/X12S
2S + R2*X22M*X22M/X22SS)
AA(1)= XICOEF
AA(2)= X3CQEF
AA(3)= X2COLF
AA(4)= XICOEF
W5)= CONSTA
CALL ZPOLYR (AA14,Z,Z)
PRINT 55,Z

55 FORMAT (8(2X,F8,10)
NST12 NST2=33
CALL. AMINMAX(X,N,XMINgXMAX)
PRINT 2000, XMIN,XMAX

2000 FORMAT (5X, *XMIN = *F8,3* XMAX = *F8.3)
_ 28 CALL PARAB(BX21,6X1,401,XPTLNIOPT010(M/N,XMAXIAAI,NSTI)

31 CALL PARAB(BX220X2,A02 *PTLN2OPTLN2001INOMAXpAA2,NST2)
33 CALL 8GNPLT

CALL PLT(1,0,1.0.s3)
CALL SCALE (X(1),10,0pN,1)
CALL SCALE (Y(1). 9,01N,1)
OX1(3)=0X2(3)=GX3(3)=QX4(3)=XPTLNUNST1+1)=XPTLN2(NST2.1):X(N+1)
QX1(4)=OX2(4)=QX3(4)=0X4(4)=XPTLN1(NST142)*XPTLN2(NST2+2)=X(N+2)
OY1(3)=0Y2(3)=OY3(3)4GY4(3)=YPTLNI(NST1*1);YPTLN2CNST2*1)0(N*1)
GY1(4)4702(4)zGY3(4)=GY4(4)PYPTLNI(NST1.2)0TTLN2(NST2+2)4Y(N*2)



CALL AXIS (0,0,090,16HPREDICTOR VARIABLE.18,10,0,0,0,X(N*1),X(N.4
1))
CALL AXIS(000,0,0,16HCRITERION VARIABLE,18,9,0,90,00(N+1)0(N+2))
X1(N1.01)=X2(N24.1)=X(N+1)
X1(041+2)=X2(N2+2):X(N+2)
Yl(N1+1)0Y2(N24,1):Y(NO)
Y1(011+2)0Y2(N2+2)=Y(N.2)
DO 902 K 2 10041

PRINT 9030(1(K)01(K),K
903 FORMAT (2X,F6,3,5X,F8,3,2X412)
902 CONTINUE

PRINT 910
DO 904 K = 102
PRINT 905,X2(K),Y2(K),K

905 FORMAT (2X,F8,3,5X/F8,3,4X,12)
904 CONTINUE
910 FORMAT (5X,*THIS IS GROUP ONE DATA*)

PRINT 911
911 FORMAT(* THIS IS GROUP TWO DATA*)

CALL LINE(X11,011.101.1,11)
CALL LINE(X20202,1,*1,5)
PRINT 900,(XPILN1(J)OPTLN1(J),J=1ST1)

900 frORMAT (5(2X,F8,3,2X48,3))
PRINT 900,(XPTLN2(J),YPTLN2(J),J=1,NST2)
CALL LINE(XPTLNi,YPTLN1,NST1s1,0,0)
CALL LINE(XPTLN2tYPTLN2,N5T2,1,0,0)
SX1g (XPILN1(6)..X(N+1))/X(N,02)
SY1* (YPTLN1(6)wY(N+1))/Y(N+2)
SX2= (XPTLN2(6)wX(04.01))/X(14+2)
SY20 (YPTLN4(6)wY(04+1))/Y(Nf2)
IF (AAI,GE.,0,0)34,35

34 ANU1090,0
GO TO 3b

35 ANG1=270,0
36 IF(AA2,GE,0,0)37,38
37 ANG2=90,0

GO TO 39
36 ANG2=270,0
39 CALL SYMBOL(SX1,SY1o,07,9HGROUP ONEFANG1,9)

CALL SYMBOL(SX2sSY2,,07,9HGROUP TKODANG2,9)
TT=10,0*X(N.02)+X(N+1)
TV: 9,0*Y(N+2)4,Y(N01)
PRINT 912,TT,TY

912 FORMAT(5X,* TT = *F8,4* TY * *F6,4)
QX1(/)=GX2(1)=GX3(1)0OX4(1)*X(N.01)
GX1(2)00(2(2)=0X3(2)=QX4(2):: X(N+1)
GY1(1)=GY2(1)00Y3(1)*GY4(1)0Y(041)
OY1(2)=GY2(2)0(2Y3(2)=04(2)= Y(04+1)
DO 70 JL * 1,4
PX(JL) 0 0,0
IF (AIMAG(Z(JL)) ,EQ, 0,0) 71,72

71 PX(JL) = REAL (Z(JL))
GO TO 70

12 PX(JL) = TT + 10,0
70 CONTINUE

PRINT 913,(PX(JL),J011/4)
913 FORMAT (2)(14(4X,F8,3))

IF(PX(1),GE,X(N41),ANDIPX(1)6LE,TT)40,41
40 QX1(1)0(liX1(2)0PX(1)

GY1(1)=Y(N.01)
GY/(2)*TY

41 IF(PX(2),GE,X(N.1).AND,PX(2),LE,TT)42,43



42 OX2(2)=GX2(1)=PX(2)
OYe(1):YCN+1)
GY2(2)LTY

43 IF(PX(3),GE,X(N*1)0ANDePX(3)(14E,TT)44,45
44 GX3(1)=UX3(2)aPX(3)

GY3(1)=Y(N+1)
GY3(2)=TY

45 /F(PX(4),GE.X(Nt1).ANDOX(4),LE4TT)46,47
46 OX4(1)=GX4(2)xPX(4)

GY4(1)=Y(t01)
GY4(2)=TY

47 CONTINUE
PRINT 901,(0X1(1),OY1(1),I=1,2)
PRINT 901,CGX2(1).GY2(I),I=1,2)
PRINT 9011(03(1),OY3(1),,I=1,2)
PRINT 90110(0X4(1)0Y4(I),I=1,2)

901 FORMAT (//2(SX,F8,3))
CALL LINE(GX1GY1p2.100,0)
CALL LINE(GX2fQY2,2,1,0,0)
CALL LINE(QX3/OY:502,11,0,0)
CALL LINE(0)(4,DY402,1010)
CALL ENDPLT

101 CONTINUE
ENO
SUBROUTINE AMISDAT (A,3,NS1MISDATA)
DIMENSION A(200),B(200),ILL(200),AA(200),BB(200)
IF (MISOATA,EQ,0)RETURN
IJKxO
DO 750 NQ =,200

750 ILL(NO)4AA(NO)=B6(NO)=0,0
DO 200 N41046
IFCA(N),E040,0,0R,B(N),E0.0.0)202,200

202 IF(MISDATA,E0,2)203,204
203 IJKaIJK+1

ILL(IJK)4N
GO TO 200

204 IF(eNOT,A(N),OR.,NOT,B(N))200,205
205 IJKIJA4,1

ILL(IJK)aN
200 CONTINUE

IF(ILL(1),EG,0)222,211
211 ICOONT=0

00 206 JC=1,NS
00 207 JV=1,IJK
IF(JC,EGIIILL(JV))206,207

207 CONTINUE
AA(JC+ICOONT)=A(JC)
BB(JC.ICOONT)=B(JC)
GO TO 206

206 ICOONTaICOONT.i
206 CONTINUE

NSiNSa/J1(
DO 209 JT=1,NS
A(P)=AA(JT)

209 B(JT)=86(JT)
222 CONTINUE

RETURN
END
SUBROUTINE SUMDATA ( A08,C#AMEANOMEANpCMEAN,ASD,BSOpC8DF58APSSBpS8
1CFRAB,RACIIRBC,RSSABoRSSACgRSSBCPM)
DIMENSION A(400),C(400)0(400)
AM*M



AMEAN=SMEAN=CMEAN= SSA=SSB=SSC=RA8=RACgRSCPRSSAB=RSSBC=RSSAC=0,0
R6A6=SAC=RSBC = 0.0
DO 2 J = leM
AMEAN=AMEAN4A(J)
BMEAN=BMEAN+B(J)

2 CMEAN:CMEAN+C(J)
AMEAN=AMEAN/AM
BMEAN=BMEAN/AM
CMEAN*CMEAN/AM
DO 3 K = 10
5SAOSA.0(A(10AMEAN)**2
SSB=SSB+CBCK)w6MEAN)**2
SSC=SSC.0.(C(K)o,CmEAN)**2
RSAB=RSABI,A(K)*800
RSSAB=RBSA84-(ACK),AMEAN)*(8(K)mBMEAN)
RSAC=RSAC+A(K)*C(K)
RSSAC=RSSAC4.(A(K).4AMEAN)*(C(K)0CMEAN)
RSBC=RSbC+B(K)*C(K)

3 kiiSSC=R6S5C+Cb(K)gBMEAN)*(C000CMEAN)
ASD= SORTF(SSA/(Amm1e0))
6SO=SORTF(SS3/(Am49100))
CSD=S@RTF(SSC/(AM*1,0))
RAB=(RSAB/AMI,AMEAN*3MEAN)/(ASD*B50)
RBC=(RSBC/AMoBMEAN*CMEAN)/(BSD*CSD)
RAC=(RSAC/Am.FAMEAN*CMEAN)/(ASD*CSD)
RETURN
ENO
FUNCTION PRBF (DA.DB.FR)
PRBF:11.0
IF(0A*DB*FRIEQ,006)RETURN
IFCFR,LT411,0)G0 TO 5
A=DA
Bain
F=FR
GO TO 10

5 A=DB
B=DA
F=120/FR

10 AA=2,0/(9.004)
8e=2.0/(9,0*B)
Z=ABS(C(1,00BB)*F**0.33333301,0+AA)/SGRT(BB*F**01,66666/4.AA))
IF(3.LTe4o0)Z=Z*(1.0+0,08*Z**4/B**3)
PRBF=025/(1.64,2*(091968544.2*(0.115194+2*(0,000344+Z*0,019527))))**

14
IF(FR,LT.1,0)PRO=1,04*PRSF
RETURN
END
SUBROUTINE AMINMAX(A,M,AMIN,AMAX)
DIMENSION A(400)
AMIN=A(1)
AMAX=A(1)
DO 2 J a 2,M
IF (A(J),LT,AMIN)AMIN=A(J)
IF (A(J)9GT,AMAX)AMAXiA(J)

2 CONTINUE
RETURN
END
SUBROUTINE PAHWAA.88pCC,XPT,YPTIAMIN,AMAX,AAA,NST)
DIMENSION XPT(33),YPT(33)
IF(AA,E0,0)4.3

4 PRINT 5
5 FORMAT(5)(/*TNE COEFFICIENT OF XSQUARED IS ZERO,*)



RE TURN

3 H=(bb)/CA4 *210)
AK=(A4)*(81088,4,0*AA*CC)/(4,4*AA*AA)
AAA=1,0/(400AA)
YPT (1)=YPT (33)=AK+01044AA
YPT (2) *YPT (32)=AK+5,5*AAA
YPT (3)=YPT (31)=AK45,0*AAA
YPT (4)sYPT (30)=AK+4,5*AAA
YPT(51mYPT(29)=AK+4,0*AAA
YPT (o)4YPT (28)=AK#3,5*AAA
YPT (7) *YPT (27)00(+3,04AAA
YPT (8)OPT (26)=AK42,5*AAA
YPT (9)4YPT (25)=AK+2,04AAA
YPT(10):=YPT (24)=AK+1,S*AAA
YPT(11)0YPT (23)=AK+1,0*AAA
YPT(12)OPT (22)=4K+0,83*AAA
YPT(13)0YPT C21)=AK.0067*AAA
YRT(14)4YPT (20)=10(4.00001AAA
YPT(15)=YPT (19)=AK+0,33*AAA
YPTC1b)=YPT t18)=AK+0,17*AAA
YPT(17)20(
DO 6 L=1,16
FT= SORT(40004AA4 *(YPT(L)4K))
LN =34L
xPT(L)4HFT

0 XPT(LN)4H+FT
XPT(17)= H
IC4JC=0
00 7 it 4 1,16
(,K :34K
IF(XPT(K),LTIAMIN)1C=IC+1

7 IF(XPT(LK),GT,AMAX)JC4JC+1
IF(1C9GT00)9,10

9 NST=330IC
00 8 Mx1,33
JKL.T.M.OIC

APT(M);XPTCJKL)
YPT(M)=YPT(AL)

U IF (JC0GT40)11,12
11 NST=NST*JC
12 CONTINUE

RETURN
END
ENO


